
Factors Associated with Disease in Farmed and Wild Salmonids Caused by Tenacibaculum Maritimum: a scoping review

Wassmuth R.M.^{1,2,3,4}, De Jongh E.J.^{1,2,3,4}, Uhland F.C.⁵, Murphy C.P.^{2,5}, Reid-Smith R.J.^{2,5,6}, Robertson K.^{1,2,3}, Otto S.J.G.^{1,2,3,7}

¹ HEAT-AMR (Human-Environment-Animal Transdisciplinary Antimicrobial Resistance) Research Group, School of Public Health, University of Alberta, ² School of Public Health, University of Alberta, ³ Antimicrobial Resistance – One Health Consortium, ⁴ Faculty of Veterinary Medicine, University of Calgary, ⁵ Centre for Food-borne, Environmental, and Zoonotic Infectious Diseases, Public Health Agency of Canada, ⁶ Department of Population Medicine, Ontario Veterinary College, University of Guelph, ⁷ Thematic Area Lead, Healthy Environments, School of Public Health, University of Alberta

Background

- Salmonid production in BC, Canada, and internationally is at an all-time high to meet global demand¹.
- With this, there is an increase in bacterial diseases such as

Preliminary Results

Records Identified From:		Records Removed Before Screening:	
Databases	n = 1974	Duplicate records removed	n = 322
		Records removed for other reasons	n = 10

yellowmouth, caused by the bacterium *Tenacibaculum* maritimum¹.

 Producers use antimicrobials to combat bacterial diseases, presenting a risk of antimicrobial resistance (AMR) spreading from the aquatic to terrestrial environment².

- Mortality rates can be up to 15% with an economic burden of \$1.6 million per year for a single company³.
- Anecdotally, a large proportion of antimicrobial use (AMU) in BC is due to the treatment of yellowmouth.
- AMU could be dramatically reduced if the disease occurrence could be controlled by preventative measures³.
- Identifying management, production, environmental, and other factors associated with the development of yellowmouth will elucidate disease control strategies.

Figure 1. Adapted PRISMA flow chart for level 1 screening process.

Secondary Reservoirs

Objective

To synthesize the available literature to identify factors associated with the development of yellowmouth in farmed and wild salmonids from Tenacibaculum maritimum.

Methods

- This review followed the framework outlined in the Joanna Briggs Institute Reviewer's Manual⁴ and will follow PRISMA-ScR reporting guidelines set by Tricco et al.⁵.
- Search Strategies were developed a priori in consultation with a librarian.
- Unrestricted search strings were run through MEDLINE[®], ProQuest, and Scopus on July 21, 2022.
- There are no restrictions on language or date, however, only published and peer-reviewed research will be included.

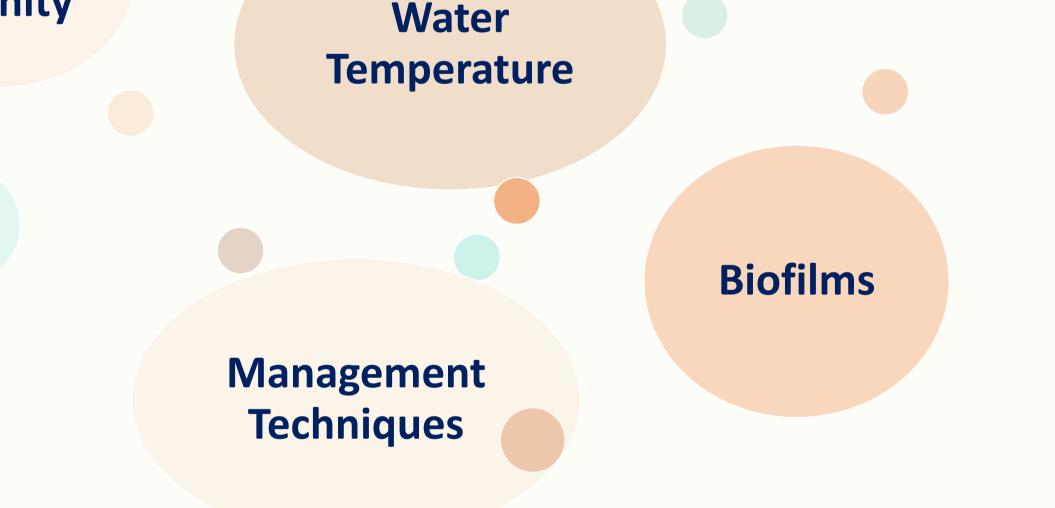


Figure 2. Summary of common factors noted in included articles during first round of screening.

Next Steps

Water

Salinity

- Complete secondary screening and data extraction for the 156 articles that remain after primary screening.
- Analyze the overarching themes of the scoping review and develop a narrative to synthesize the known data.

Acknowledgements

This project was supported by funding from the Genomics Research and Development Initiative Project on Antimicrobial Resistance through the Public Health Agency of Canada and a grant from the Alberta Ministry of Jobs, Economy, and Innovation, by the Major Innovation Fund Program for the AMR – One Health Consortium.

- Included articles must investigate *Tenacibaculum maritimum* as a primary point of interest and at least partially include relevant factors (e.g., management, production, disease, environmental, or other).
- Two independent reviewers in primary screening, with a "1 in 2 out" rule in secondary screening.

References

1. Asche, F., Cojocaru, A. L., & Roth, B. (2018). The development of large scale aquaculture production: A comparison of the supply chains for chicken and salmon. Aquaculture, 493, 446-455.

- 2. Collignon, P. J., & McEwen, S. A. (2019). One Health-Its Importance in Helping to Better Control Antimicrobial Resistance. Trop Med Infect Dis, 4(1).
- 3. Wade, J., & Weber, L. (2020). Characterization of Tenacibaculum maritimum and mouthrot to inform pathogen transfer risk assessments in British Columbia.
- 4. Aromataris E, Munn Z, editors. Joanna Briggs Institute reviewer's manual. The Joanna Briggs Institute. 2017. Available from https://reviewersmanual.joannabriggs.org/

5. Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018 Sept;169:467–473. DOI: 10.7326/M18-0850

Public Health Agency of Canada

Agence de la santé publique du Canada

